
11. NUMERICAL TECHNIQUES 

Abstract — This paper illustrates how to determine the 

bandgap structure of photonic crystals through meshless 

methods. These methods are generally akin to the Finite 

Element Method (FEM), as they also deal with the 

discretization of weak forms and produce sparse stiffness 

matrices. The major difference is the complete absence of 

whatever kind of mesh. We concentrate in a particular 

method, the Meshless Local Petrov Galerkin 4 (MLPG4), also 

known as Local Boundary Integral Equation Method (LBIE). 

Since the boundary conditions governing the electromagnetic 

fields are periodic in a unit cell, we develop a special scheme to 

embed this feature on the shape functions used to approximate 

the field. As a result, the boundary conditions do not need to 

be imposed on the unit cell. 

I. INTRODUCTION 

The seminal idea underlying all meshless methods is to 

be able to build numerical solutions to differential equations 

defined in a certain geometrical domain without resorting to 

a mesh or a grid set up in this domain. The first studies 

concerning the use of meshfree techniques were reported in 

the early past decade, in the field of Computational 

Mechanics [1]. In Electromagnetics there have been such 

appearances like [2], where a method called Element-Free 

Galerkin (EFG) has been employed. EFG is not truly 

regarded as a meshless method, because background cells 

are necessary to perform the numerical integrations [1]. In 

MLPG, the integrations are carried out within certain local 

domains, what dismisses the use of whatever kind of 

background cells [3]. 

The MLPG method employs two kinds of functions, 

shape and test functions, which belong to two different 

spaces. The shape functions are constructed numerically, 

whilst there are many choices available to the test functions. 

We are particularly interested in MLPG4/LBIE, whose test 

function is a solution to Green’s problem for Laplace’s 

equation. The MLPG4/LBIE method was successfully 

applied to situations in 2D electromagnetic wave scattering 

[5] and in 3D Electrostatics [6]. We now move on and look 

for applications of MLPG4 to eigenvalue problems, 

specifically those arising in the analysis of 2D photonic 

bandgap crystals. After a sketch on the general idea behind 

meshless methods and some discussion on periodic shape 

functions, we present an example concerning the band 

structure of a photonic crystal for incoming TM
z
 waves. 

II. MESHLESS METHODS: OVERVIEW AND SHAPE 

FUNCTIONS 

Let   be a two-dimensional domain (global boundary 

  ). In order to find a numerical approximation    for a 

function  , we begin by spreading nodes across the domain. 

The nodal distribution need not be uniform (even random 

distributions can be used). The next step is to define shape 

functions associated to each node. These functions do not 

have analytical expressions, and therefore require a 

numerical scheme to be constructed. Usually, a shape 

function associated to a node depends on the relative 

positions of neighboring nodes. Furthermore, shape 

functions are compactly supported, i.e., they are different 

from zero only at a small region surrounding the node 

(called the node’s influence domain). It is this very property 

which renders the final stiffness matrix sparse. So, given a 

point    where    shall be calculated there follows: 

                                                 

where the global index   runs through all nodes whose 

influence domains include point    and each     is a 

coefficient that shall be determined (also called nodal 

parameter). A constraint must be satisfied: the union of the 

influence domains from all nodes must cover the whole 

domain. The size of the influence domains can be adjusted, 

but should not be set too large. Overlapping of influence 

domains is freely allowed. 

There are many ways in which the shape functions can 

be constructed. In this work, a procedure called Moving 

Least Squares (MLS) has been employed [1]. In order to get 

the MLS shape functions, one usually has to go through a 

rather extensive numerical calculation involving matrices. 

Given a point    at which the shape functions are to be 

calculated, one first finds all neighboring nodes which 

extend their influence domains until    (for example, nodes 

with global indices 3, 5, 10 and 18, say, act upon   ). Then 

one feeds all this information in a numerical procedure and 

finally gets the shape functions calculated at   : 

                                                     

where  ,   and   are matrices which depend on    and on 

the coordinates of the neighbor nodes [4]-[5].  

III. CALCULATING THE BAND STRUCTURE OF A PHOTONIC 

CRYSTAL: THE LBIE METHOD 

     In LBIE, to each node   at     is ascribed a test function 

  , in addition to a shape function   . This test function acts 

in a specific region    surrounding the node, called test 

domain. In LBIE, the test domain is required to be a circle 

centered at each node, and must satisfy:          
           (a Dirac delta at    ) and          at the test 

domain boundary    . A function    satisfying the above 

requirements is given by                             . 
In this work, the radii of all test (  ) and influence (  ) 
domains are equal. 

 A two-dimensional photonic bandgap crystal is a 

periodic array of dielectric structures, the most remarkable 

Calculating the Band Structure of Photonic Crystals through the Meshless 

Local Petrov-Galerkin (MLPG) Method and Periodic Shape Functions 

Williams L. Nicomedes
1
, Renato C. Mesquita

2
, and Fernando J. S. Moreira

1
 

Depts. of 
1
Electronic and 

2
Electrical Engineering, Federal University of Minas Gerais 

Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil 

wlnicomedes@yahoo.com.br, renato@ufmg.br, fernandomoreira@ufmg.br 

mailto:wlnicomedes@yahoo.com.br
mailto:renato@ufmg.br


11. NUMERICAL TECHNIQUES 

 
Fig. 1. A periodic MLS shape function in the domain              
          . It can be verified that this shape function   satisfies boundary 

conditions (4). The periodicity of the function   has been embedded in the 
shape functions used to approximate it. 

property of which is that it is able to select what 

wavelengths can actually propagate through it. A unit cell is 

a pattern that is replicated throughout the space in order to 

generate the crystal. The mathematical analysis is usually 

confined to a single cell, which coincides with our 

computational domain  . For an incoming TM
z
 wave 

(electric field pointing at   ), the problem is modeled by the 

Helmholtz equation for the electric field    and Bloch-

periodic boundary conditions [6]. However, according to 

Bloch’s theorem, the electric field    can be written as 

                      , where   is now a periodic function in 

  and      is the Bloch vector. Substituting this new form for 

  , we get an equivalent problem: 

                     
 
                          

                                                   

Boundary conditions (4) tell us that the function   (and its 

normal derivative) at one side of    is equal to   at the 

opposite side (    is the lattice translation vector). So   is 

periodic in a unit cell  . In order to solve (4), nothing 

seems more natural than to find shape functions which are 

also periodic in  . We found a very simple way to construct 

these shape functions. It boils down to considering an extra 

layer of cells around   and to applying (2) to this new 

extended domain. If our computational domain   happens 

to be                        , Fig. 1 shows how a 

periodic MLS shape function associated to a given node 

would look like. If all shape functions satisfy (4), then a 

linear combination of  ’s also will, i.e., the  ’s form a 

vector space of functions periodic in  . Therefore, 

boundary conditions (4) no longer need to be imposed. In 

order to find the weak form for (3), we take each node   and 

apply Green’s second identity to   and   , getting a local 

integral equation: 

         
   
     

                     
 
    

  

   

  
 

 
 
 

        
  

                       

 
Fig. 2. Band structure for the crystal formed by dielectric veins. Blue lines: 

MLPG4, Red balls: reference [7]. At the inset, the light blue regions are 

characterized by     , whereas the grating (veins) has       . The 

region inside the white square is the unit cell  . 

Instead of Green’s identity, one can also apply the weighted 

residual method, and thus get a slightly different weak 

form, in which the first two terms of (5) are substituted by 

an area integral involving       . The final step is to 

enforce (5) at all nodes in  , and calling upon (1) whenever 

  appears. As a result, we get a generalized eigenvector 

problem of the type         , which is readily solved for 

the eigenvalues         .   and   are sparse matrices. 

 Figure 2 illustrates the band structure concerning the four 

first eigenvalues (normalized to       ), for the Bloch 

vector varying from point   (          ) to point   

(            ), from   to   (              ), and 

finally from   back to  . The crystal is a square array of 

dielectric veins (       and thickness       , at the 

inset). The domain   is a square whose side is   

(normalized to 1, as in Fig. 1), and the results are compared 

to those shown in [7]. Even though only approximately 200 

nodes have been scattered throughout  , and despite a 

coarse numerical integration employed in (5), a good 

agreement has been obtained. 

IV. REFERENCES 

[1] G. R. Liu, Mesh Free Methods: Moving Beyond the Finite Element 

Method.  CRC Press, 2003. 

[2] A. Manzin, and O. Bottauscio, “Element-free Galerkin method for 
the analysis of electromagnetic-wave scattering”, IEEE Trans. 

Magnetics, vol. 44, no 6, pp. 1366-1369, 2008. 
[3] S. Atluri and S. Shen, “The Meshless Local Petrov-Galerkin Method: 

A simple & less-costly alternative to the finite-element and boundary 

element methods”, CMES, vol. 3, no 1, pp 11-51, 2002. 
[4] W. Nicomedes, R. Mesquita, and F. Moreira, “A Local Boundary 

Integral Equation (LBIE) Method in 2D Electromagnetic Wave 

Scattering, and a Meshless Discretization Approach”, Proc. of the 
SBMO/IEEE MTT-S Int. Microw.Optoelec. Conf., pp. 133-137, 2009. 

[5] W. Nicomedes, R. Mesquita, and F. Moreira, “A Meshless Local 

Boundary Integral Equation Method for Three Dimensional Scalar 
Problems”, IEEE Transactions on Magnetics, to be published. 

[6] I. Tsukerman, Computational Methods for Nanoscale Applications, 

Nanostructure Science and Technology Series, Springer, 2008. 
[7] J. D. Joannopoulos, S.G. Johnson, J. N. Winn and R. D. Meade, 

Photonic Crystals: Molding the Flow of Light, Princeton University 

Press,2008,p.72.

 


